MRI RIGHT SHOULDER WITHOUT CONTRAST

CLINICAL HISTORY:
Accident with pain 6 days back.

TECHNIQUE
Multiplanar multisequence MR images of the right shoulder were obtained without the administration of intravenous contrast.

FINDINGS

- There is complete avulsion of the distal attachment of supraspinatus tendon from its insertion site with avulsed bony fragment measures approximately 10.0 x 6.0 mm. Thickening with proton density fat saturated hyperintense is noted involving the distal subscapularis tendon, suggestive of partial tear. Teres minor, teres major tendons appear intact and reveal normal signal intensity. Biceps tendon is seen in the bicipital groove and appears normal.

JOINT:

- There is a tear of the anterior labrum with its displacement medially. Mild effusion is noted in the glenohumeral joint, subdeltoid, subacromial, and subcoracoid bursa. Acromioclavicular joint appears normal for age. Coraco-acromial arch appears normal.

BONES:

- There is an avulsion fracture of the superolateral aspect of the humeral head involving distal attachment of the supraspinatus tendon with an avulsed bony fragment measuring approximately 10.0 x 6.0 mm. STIR hyperintense areas of altered marrow signal intensity are seen involving the superolateral aspect of the humeral head and proximal shaft suggestive of marrow contusion/edema. Neurovascular structures are unremarkable.

IMPRESSION:

1. Avulsion fracture of the superolateral aspect of the humeral head as described above.
2. **STIR** hyperintense areas of altered marrow signal intensity are seen involving the superolateral aspect of the humeral head and proximal shaft suggestive of marrow contusion / edema.

3. Thickening involving the distal subscapularis tendon, suggestive of partial tear.

4. Tear of the anterior labrum with its displacement medially.

5. Mild effusion in the glenohumeral joint, subdeltoid, subacromial and subcoracoid bursa.

RECOMMENDATION

Findings reveal post-traumatic features which should be correlated clinically with date of incident and specific mechanism of injury.